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A numerical model for the exhaust noise radiation problem is presented. In the model, it is assumed that an

incoming wave is propagating through the exhaust nozzle, or the fan duct, and radiating outside. The near-field

propagation is based on the solution of the linearized Euler equations in the frequency domain: for each wave

number, a linearized Euler problem is solved using a finite element method on unstructured grids for arbitrarily

shaped axisymmetric geometries. The frequency-domain approach enables the suppression of theKelvin–Helmholtz

instability waves. Moreover, each single calculation, limited to a single frequency, is well suited to the exhaust noise

radiation problem inwhich the incomingwave canbe treated as a superposition of elementary ductmodes. To reduce

the memory requirements, a continuous Galerkin formulation with linear triangular and quadrangular elements is

employed and the global matrix inversion is performed with a direct solver based on a parallel memory distributed

multifrontal algorithm for sparse matrices. The acoustic near field is then radiated in the far field using the

formulation of FfowcsWilliams andHawkings. Numerical calculations for a validation test case, theMunt problem,

and two turbomachinery configurations are compared with analytical solutions and experimental data.

I. Introduction

A LTHOUGH in the last decade aircraft engine noise emissions
have been considerably reduced, more efforts to achieve further

reduction are necessary to meet the more and more stringent
environmental targets. Although recent research programs brought
significant progress in reducing both the turbomachinery noise
generation and the radiation of noise from the intake, there is still a
lack of knowledge about the exhaust noise radiation problem and the
need to develop accurate models for its prediction. This problem
represents a challenge for computational aeroacoustics, due to the
fact that radiated sound propagates through the shear layers
separating the core, bypass, and freestream fields.

In this paper, a mathematical model of propagation and radiation
of turbomachinery noise through the engine exhaust is presented.
The aim of the present work is to provide a model able to efficiently
predict the acoustic behavior of the engine exhaust so that it can be
used to improve turbomachinery aeroacoustics design. In the model
it is assumed that an incoming harmonic duct mode is propagating
through the exhaust nozzle, or the fan duct, and radiating at infinity as
a small perturbation of a steady mean flowfield; therefore, entropy
fluctuations and viscous effects are negligible. Under these
assumptions, the acoustic propagation is governed by the linearized
Euler equations (LEE) in the near field. The nonuniform mean
flowfield is a solution of the steady Reynolds averaged Navier–
Stokes equations. The far-field radiation occurs in a regionwhere the
mean flowfield is essentially uniform; therefore, the far-field solution
can be obtained using an integral formulation like the Ffowcs

Williams and Hawkings (FW-H) method or the Kirchhoff approach.
For the type of problems of interest in this work, the two approaches
are equivalent. The FW-H method has been adopted because of the
experience acquired in previous studies, in which the FW-H
numerical tool was extensively tested.

Both the LEE and the FW-H formulation are solved in the
frequency domain. In the frequency domain the time variation of the
acoustic variables is assumed to be harmonic, with the frequency
response equal to the frequency of the incoming modal wave acting
as the sound source. The solution of the LEE in the frequency domain
enables the suppression of the temporal growth of the instability
waves, known as the Kelvin–Helmholtz instabilities, which may
obscure the acoustic solution in the time-domain calculations [1,2].
For a given frequency, the system of algebraic equations resulting
after the numerical discretization in space must be assembled and
solved globally. The matrix inversion could be solved by means
of an iterative technique. However it has been shown that iterative
techniques are equivalent to pseudo-time-integration methods and
lead to the occurrence of the instability wave solutions [3]. To
overcome this problem, a direct method for the inversion of the
global matrix must be adopted. Direct methods have larger memory
requirements, but the solution is not affected by Kelvin–Helmholtz
instabilities. The frequency-domain approach has several advantages
for the problem of interest in this paper. The solution of each
harmonic mode composing the incoming wave can be obtained
by a single matrix inversion; after that, the overall solution is
reconstructed in the time domain by an inverse Fourier transform.
Both steps are performed with efficient computational techniques;
therefore, for signals characterized by few harmonic components, as
in the case of turbomachinery tonal noise, the computational time
required by a frequency-domain approach is smaller compared to
the one necessary for a time-domain computation. Moreover, the
frequency-domain approach makes it easier to impose the natural
boundary conditions of lining acoustic components [4].

Several frequency-domain solvers for the LEE have been
proposed, both with structured [2,5] or unstructured meshes [3,6].
For arbitrary geometries, as in the case of turbomachinery exhaust
noise, the latter approach makes it easier to build the mesh. In the
present model, the LEE, written in the frequency domain, are solved
on an unstructured mesh with a finite element method (FEM), a
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natural approach to unstructured grids. The FEM is based on a
continuous Galerkin discretization with linear triangular and
quadrangular elements. To achieve a higher precision order, the
discontinuousGalerkin approachwould bemore appropriate, but it is
extremely memory-expensive, as shown in Rao and Morris [3],
leading in the case of a frequency-domain solution of a complex
geometry to prohibitive memory requirements. Moreover, to further
reduce the memory issue, the global system is solved with a direct
method based on a parallel memory distributed multifrontal
algorithm for sparsematrices [7]. The perfectlymatched layer (PML)
technique for the nonreflecting far-field boundary conditions is
implemented [8].

In the remainder of this paper, the model and numerical results
are presented. In Sec. II, the numerical model for axisymmetric
geometries is presented. For each modal frequency, the LEE are
written in a form including only radial and axial derivatives. In
Sec. III, numerical results are presented. To validate the propagation
model, as a first step, the numerical calculations are compared with
respect to the analytical solution of the Munt problem [9]. Then the
propagation and radiation of noise through two realistic turbofan
engine exhaust configurations is studied, and the numerical
calculations are compared with the experimental data obtained
within the framework of the European Union (EU) project known as
Turbomachinery Noise Radiation Through the Engine Exhaust
(TURNEX).§ Results are presented for both the near-field
propagation and the far-field angular directivity radiation pattern
and compared with experimental results.

II. Wave Propagation Model

A. Near Field: Linearized Euler Equations

1. Definition of Duct Modes

The problem involves the propagation of tonal noise inside an
axisymmetric nozzle of a turbofan engine with hard walls in the
presence of jetflow. The incidentwave can be represented as a sumof
harmonicmodeswith angular frequency!. Each harmonicmode can
be further decomposed into a sum of elementary spatial modes called
duct modes [10]. Each duct mode can be written as follows:

p�r; �; t� �
X1
m�0

X1
��0

am�Re�p̂m��r�eI�m��!t���� (1)

where the indices �m;�� identify, respectively, the azimuthal mode
and the radial mode; am� are weighting coefficients, by means of
which an arbitrary distribution can be decomposed; and � is the
phase of the mode. Defined as the hub-tip ratio �� rhub=rtip, the
radial shape of amode propagating in an annular duct with hardwalls
and uniform mean flow is given by the relation

p̂ m��r� � Jm
�
�rr

rtip

�
�Q�

m�Ym

�
�rr

rtip

�
(2)

where �r � �r�m;�; �� and Q�
m� �Q�m;�; �� are the successive

paired roots of the system:�
J0m��r� �QY 0m��r� � 0;

J0m���r� �QY0m���r� � 0
(3)

In the previous expressions, Eqs. (2) and (3), Jm and Ym denote the
Bessel functions of the first and second kinds of orderm, whereas J0m
and Y 0m are their derivatives. It can be shown [10] that the value of the
index � gives the number of pressure nodes in the radial direction.

2. Governing Equations

The propagation of sound waves in a medium with nonuniform
mean velocity U0�x�, neglecting entropy fluctuations and fluid
viscosity, is governed by the linearized Euler equations [11]. In
cylindrical coordinates these equations can be written as

@q

@t
� ~A

@q

@z
� ~B

@q

@r
� ~C

@q

@�
� ~Dq� 0 (4)

whereq� ��0; u0; v0; w0; p0�T is the acoustic perturbationvector. ~A, ~B,
and ~C are the Jacobian matrices of the fluxes, and ~D contains the
mean flow gradients.

Transforming the equations into the frequency domain and
introducing the duct modes, Eq. (1), all acoustic perturbation
quantities can be written as a sum of harmonic modes:

q � Re�q̂�r; z; !�eI�m��!t�� (5)

Substituting Eq. (5) into Eq. (4), the LEE for a harmonic elementary
mode are given by

A
@q̂

@z
� B@q̂

@r
� Cq̂� 0 (6)

where q̂� ��̂; û; v̂; ŵ; p̂�T and the matrices A, B, and C have the
following expressions:
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u0 �0 0 0 0

0 u0 0 0 1
�0

0 0 u0 0 0

0 0 0 u0 0

0 �p0 0 0 u0

2
66664

3
77775; B�

v0 0 �0 0 0

0 v0 0 0 0

0 0 v0 0 1
�0

0 0 0 v0 0

0 0 �p0 0 v0

2
66664

3
77775

C�

I!�r �U0
@�0
@z

�0
r
� @�0

@r
�0

Im
r

0

� 1
�2
0

@p0
@z

I!� @u0
@z

@u0
@r

0 0

� 1
�2
0

@p0
@r

@v0
@z

I!� @v0
@r

0 0

0 0 0 I!� v0
r

Im
�0r

0 @p0
@z

�p0
r
� @p0

@r
�p0

Im
r
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2
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3
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(7)

In Eqs. (7), the subscript �:�0 denotes mean flow quantities,m stands
for the azimuthal mode of the incoming wave, and ! is the time
angular frequency of that wave. It is evident from Eqs. (7) that, to
solve the linearized Euler equations, the mean flowfield must be
known in advance.

To reduce computational time and memory requirements, the
pressure gradients in the momentum equations are neglected. A
similar approximation, called gradient term suppression (GTS), is
often used to overcome instability problems that prevent con-
vergence of time-domain algorithms for the LEE [12,13]. Although
the original GTS approximation suppresses all mean flow gradients,
which are likely to be small in the considered subsonic flows, in the
present case, being interested in reducing the computational time,
only the mean flow gradients in momentum equations that involve
density fluctuations are neglected. This allows one to decouple the
continuity equation and to solve only momentum and energy
equations. The number of total unknowns is thus reduced by a factor
of T � 5=4, whereas the nonzero terms in the coefficient matrix of
the linear system associated with the discretized form of Eqs. (6) is
reduced by a factor of T 2. Indeed, a smaller linear system can be
solved faster, and, more important, its resolution requires less
memory. Density fluctuations are then evaluated from pressure
fluctuations using the relation

�0 � p0=c20 (8)

where the mean flow is assumed to be locally isentropic, and c0 is the
local speed of sound. Density fluctuations are only evaluated on the
FW-H integration surface, which is always placed in a region where
the mean flow is assumed to be uniform and homoentropic.

If the incident wave is neither harmonic nor a single duct mode
�m;��, it is always possible to decompose it in a sum of harmonic
elementarymodes. For eachmode a linearized Euler system has to be
solved and then the solution can be reconstructed as the sum of
elementary mode solutions.

§Data about TURNEX available online at http://ec.europa.eu/research/
transport/projects/article_3697_en.html [retrieved 1 February 2010].
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3. Boundary Conditions

When solving the linearized Euler equations in an open domain, a
condition at the outer boundaries is required to make the problem
well posed. To avoid incoming spurious reflections, a PMLboundary
condition is used [8,14]. It consists of surrounding the computational
domain by an artificial domain, called the absorbing layer, inside
which the waves are damped.

The PML formulation for the LEE in cylindrical coordinates can
be written as

Apml

@q̂

@z
� Bpml

@q̂

@r
� Cpmlq̂� 0 (9)

The matrices Apml, Bpml, and Cpml of Eq. (9) are defined as follows:

Apml � �rAuni; Apml � �zBuni;

Cpml �
�
�z�rCuni � �r�z

M0

c0�1 �M2
0�
Auni

� (10)

where �z � �1� �z
I!
�, �r � �1� �r

I!
�, and the matrices Auni, Buni, and

Cuni are the matrices of Eqs. (7) under the assumption that the mean
flow is uniform and parallel to the z axis, that is,

Auni�

u0 �0 0 0 0

0 u0 0 0 1
�0

0 0 u0 0 0

0 0 0 u0 0

0 �p0 0 0 u0

2
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3
77777775
; Buni�
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0 0 0 0 0

0 0 0 0 1
�0

0 0 0 0 0

0 0 �p0 0 0

2
66666664

3
77777775

Cuni�

I! 0 �0
r

�0
Im
r

0

0 I! 0 0 0

0 0 I! 0 0

0 0 0 I! Im
�0r

0 0 �p0
r
�p0

Im
r
I!

2
66666664

3
77777775

(11)

The absorption coefficients�z and�r have the following expressions:

�z � �max�1 �M2
0�
����z � zlDz

����
�

; �r � �max

����r � rlDr

����
�

(12)

whereDz andDr are the widths of the absorbing layers in the z and r
directions, respectively, and zl and rl are the positions of the
interfaces between the PML domain and the physical domain. The
maximum value of the damping �max is usually taken as 2c0=�z and
the coefficient � is set to 2 [14].

PML boundary condition equations are also used to impose
incoming waves at inlet boundaries, where incoming waves should
be specified but at the same time outgoing waves should leave the
computational domain without reflections. This can be achieved
applying the PML equations to the reflected wave [2], which can be
expressed as the total acoustic field minus the incoming prescribed
acoustic wave:

q̂ re � q̂ � q̂in (13)

Substituting Eq. (13) into Eq. (11), the equation for the inlet PML
domain reads

Apml

@q̂

@z
� Bpml

@q̂

@r
� Cpmlq̂� Apml

@q̂in
@z
� Bpml

@q̂in
@r
� Cpmlq̂in

(14)

The q̂in values for the incoming acoustic wave can be evaluated using
the analytical equations for the duct modes, Eq. (1).

Duct walls are assumed to be acoustically rigid; this means that
they reflect the acoustic waves. On these boundaries the acoustic
normal velocity is imposed equal to zero:

rÛ � n� 0 (15)

where Û � �û; v̂; ŵ�T .
Because the dependence of the acoustic field on � is known, the

problem was reduced from a three- to a two-dimensional one in
�r; z�. Moreover, by applying an appropriate boundary condition at
the z axis, the equations could be solved only for r 	 0. The
symmetry boundary condition should impose that the acoustic
velocity is aligned with the r� 0 axis, so that, at that axis, a wall
boundary condition type can be applied.

4. Numerical Method

The LEE are discretized using a continuous Galerkin formulation
of the FEM. Defining a test function vector space,W, and a domain
�, the weak form of the LEE problem

L �q̂� � A@q̂
@z
� B@q̂

@r
� Cq̂� F (16)

consists in finding q̂ 2 W such that

a�q̂; r̂� � l�r̂� � 0 8 r̂ 2 W (17)

where the bilinear form a and the linear form l are defined as

a�q̂; r̂� �
Z
�

r̂tL�q̂� d� (18)

l�r̂� �
Z
�

r̂tF d� (19)

The Galerkin finite element approximation of this problem is
obtained considering a finite element space, Wh to approximate W,
and finding Uh 2 Wh such that

a�q̂h; r̂h� � l�r̂h� � 0 8 r̂h 2 Wh (20)

For the LEE, this formulation lacks stability. Astley et al. [15] have
found that solving theLEEwith a standardfinite element formulation
leads to unstable numerical models with the presence of spurious
oscillations in the solutions. A possible stabilization strategy, called
the algebraic subgrid-scale stabilized (ASGS) method [16], consists
of adding to the left-hand side of Eq. (20) a term of the following
form:

r�q̂h; r̂h� �
Z
�e

P�r̂�t	R�r̂h� d� (21)

where e is the eth element of the mesh; 	 is a matrix of stabilization
parameters; P is equal to minus the adjoint of the operator L, that is,
P�q̂� � �L
�q̂�; and R�q̂h� is the residual of the differential
equation, that is to say, L�q̂h� � F. The stabilization matrix has the
expression 	 � ~	MI , where MI is the identity matrix, and ~	 is the
stabilization parameter proposed by Guasch and Codina [17] for the
two-dimensional Helmholtz equation. Preliminary numerical tests
have proven that this two-dimensional formulation is also effective
for axisymmetric geometries and for the LEE.

The space Wh is chosen to be the vector space formed by linear
Lagrangian polynomials defined on the nodes of the elements.
Therefore, each Fourier coefficient q̂i of the acoustic fluctuations can
be interpolated using its nodal values so that

q̂ i�x� �
XN
l�1

dl’l�x� (22)

where ’l�l� 1; . . . ; N� are the linear Lagrangian polynomials, and
dl are N unknown complex coefficients that represent the nodal
values of q̂i. Because the functions ’l�l� 1; . . . ; N� are linearly
independent, the discrete problem can be stated as finding the
coefficients dl such that
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�a�’i; ’l� � r�’i; ’l��dl � l�’i� � 0 i� 1; . . . ; N (23)

The discrete problem leads to a complex matrix system in which the
complex Fourier coefficients of the acoustic fluctuations are the
unknowns. This system is solved using the multifrontal massively
parallel solver (MUMPS) package [7].MUMPS uses a direct method
based on a multifrontal approach that performs a direct factorization
A� LDLT .

B. Far Field: Ffowcs Williams and Hawkings Formulation

To evaluate the acoustic fluctuations in the far field, the three-
dimensional FfowcsWilliams andHawkings equation is solved [18].
This equation is an exact rearrangement of the Navier–Stokes
equations and allows one to determinate the acoustic signal at distant
observer locations if the details of the source region are already
known. The idea behind this approach is to extend the definition of all
fluid-dynamic quantities to the whole domain, as well as to the
regions occupied by a body. To do this, the fluid-dynamic quantities
are multiplied by the Heaviside function of argument f,H�f�, where
f� 0 defines the surface outside of which the solution is desired:

H�f� �
�
0 inside the surface
1 outside the surface

(24)

The only limitation in the choice of this surface is that it must enclose
all the solid bodies contained in the computational domain.

In this work the noise source is only prescribed via a boundary
condition on a duct inlet, and so the FW-H formulation can bewritten
in differential form as
�
@2

@t2
� c20

@2

@xi@xi

�
�H�f��0� � � @

@xi
�Fi
�f�� �

@

@t
�Q
�f�� (25)

where

Fi � �
ijp� �ui�uj � vj��
@f

@xj
(26)

Q� ��0vi � ��ui � vi��
@f

@xi
(27)

As stated earlier, a prime denotes a perturbation from the freestream
condition denoted by the subscript �:�0. The fluid velocities are ui,
whereas vi represent the velocities of the surface f. The total
density and pressure are given by �� �0 � �0 and p� p0 � p0,
respectively.

The FW-H formulation is used for the propagation of the acoustic
fluctuations in the far field. It is reasonable to assume that in the far
field the mean flow is uniform. When the mean flow is aligned with
the z axis, the motion of the surface is governed by f� f�z� w0t�,
where w0 is the constant velocity describing the motion. Applying a
Galilean transformation to Eq. (25), the frequency-domain solution
of the FW-H equation can be written in a Cartesian-coordinate
system as [19]

H�f�c20�̂�y; !� � �
Z
f�0

I!Q̂��; !�G�y; �� ds

�
Z
f�0

F̂i��; !�
@G�y; ��
@yi

ds (28)

where G is the appropriate Green function, � are the surface
coordinates, and y are the observer coordinates. In the numerical
implementation, the source terms Q̂ and F̂i are obtained by
evaluating the functions Q and Fi in the time domain and then
applying the Fourier transform. The time-domain expressions of Fi
and Q after the coordinate transformation are

Fi � �
ij�p0 � p0� � ��0 � �0��u0i � w0
3i��u0j �w0
3j�
� �0w2

0
3i
3j�n̂j (29)

Q� ���0 � �0��u0i � w0
3i� � �0w0
3i�n̂i (30)

where n̂i is the outward directed unit normal vector. The surface
velocities vi have been replaced by�w0
3i; this implies that themean
flow is in the positive direction (or, equivalently, that the surface
moves in the negative direction) when w0 > 0. The u0i are the same
fluid velocities of Eq. (25); therefore, they do not contain the motion
of the mean flow, w0
3i. Under the assumption that the mean flow is
subsonic, the Green function for Eq. (28) could be obtained applying
a Prandtl–Glauert transformation to the three-dimensional free space
Green function; this leads to

G���1=4�R��e�Ik�R=��Mz=�2� (31)

where the wave number is defined as k� !=c0, R�����������������������������������������������������������������������
�x � ��2 � �y � 
�2 � �z � ��2=�2

p
, M �w0=c0, and ������������������

1 �M2
p

.
The near-field calculations are performed only in the �x; z� plane.

Because the FW-H model is fully three dimensional, the acoustic
field must be reconstructed over the whole three-dimensional
integration surface. The � dependence of the acoustic variables is
given by Eq. (5); therefore, over an axisymmetric surface, the
acoustic field is given by

q̂�x; y; z; !� � q̂�r; z; !�j��0eIm� (32)

with y=x� tan �.

III. Results

A. Model Validation: Munt Problem

To validate the numerical model, the acoustic diffraction by a
sound wave propagating out of a rigid semi-infinite cylindrical duct
(Fig. 1) is studied. The radius of the cylinder is equal to
r1 � 1:212 m, and both surfaces of the duct, inner and outer, are
rigid. The duct contains a uniform axial mean flow of density �2,
MachM2, and speed of sound c2. In the outer region, the flow is also
uniform and axial, with density �1, MachM1, and speed of sound c1.
There is no shear layer between the two flows; instead, they are
separated by a vortex sheet. For this problem, which is called the
“Munt problem,” the analytical solution proposed by Munt [9] has
been subsequently generalized for annular ducts and linedwalls [20–
22]. Three flow conditions are studied: in the first one the acoustic
medium is at rest, herein referred as the no-flow condition,whereas in
the others, termed the static-approach and static-cutback conditions,
there is a mean velocity inside the duct. The flow properties for each
flow condition are given in Table 1.

The computational domain for the near-field calculations
extends for z 2 ��2:5 m; 5:5 m� and for r 2 �0:0 m; 3:9 m� and is
surrounded by vertical and horizontal PML domain with a thickness
of 0.7 m, which means that, for a wave with a frequency of 866 Hz,
the layers have a thickness of about 1.75 wavelengths. The domain is
discretized using a uniform structured grid with 76 elements per
meter in both the z and r directions, resulting in a grid with about
250,000 quadrilateral elements. For the FW-H calculation, two
different integration surfaces are used. For the no-flow condition, the
surface is a cylinder with a radius of 1.24 m, closed in the fore region
by a semisphere centered at the duct exit plane. In the aft region, the
surface is open and extends to the end of the computational domain,
that is, �2:5 m. For the other conditions, the surface is a cylinder
with a radius of 1.25 m, open on both sides and extending over the

Fig. 1 Circular duct geometry: Munt problem.
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entire near-field domain. It is important to note that in the static-
approach and static-cutback conditions the surface is not foreclosed;
the reason is that the FW-H integration surface must be placed
entirely in a uniform flow and, therefore, cannot cross the vortex
sheet. The surface is discretized with a grid that is uniform in both the
z and � directions. Because the far-field calculations have a small
impact in terms of computational requirements, the number of points
per wavelength on the integration surface is always at least equal to,
but more often larger than, the corresponding value for the near-field
acoustic mesh.

For the no-flow condition, the incoming wave consists of a �m;��
mode varying harmonically in time with frequency of 956 Hz,
corresponding to a dimensionless frequency equal to kr1 � 21:4, and
with unit incident intensity. Because the grid has 76 elements per
meter, there are about 27 elements per wavelength (EPW). In Fig. 2a,
the near-field instantaneous pressure perturbations for the duct mode
(0, 1) are reported; the figure shows the contour plot of the real part of
the Fourier pressure coefficient, Re�p̂�. Figure 2b displays the
corresponding sound pressure level (SPL) directivity pattern,
describing the field radiated out of the duct. The far-field directivity is
evaluated on an arc with the center defined at the center of the duct
exit section and a radius equal to r� 46 m. Similar results are

presented for mode (9, 1) in Figs. 3a and 3b. For all these cases, the
agreement between the numerical and the analytical solution is very
good.

In the static-approach condition, there is a mean flow velocity
inside the duct, with aMach number equal to 0.447, whereas outside
the duct the fluid is at rest. In Figs. 4a and 4b, the instantaneous
pressure field and directivity for mode (9, 1), with a frequency of
866 Hz (kr1 � 18:99 and EPW� 30), are presented. Also in this
case there is a good agreement with the analytical solution. To have
a physical solution, the acoustic pressure must be continuous at the
duct lip (Kutta condition). Because the numerical solution is
continuous on the mesh nodes, the Kutta condition is naturally
satisfied by the numerical model. The vorticity shed from the duct lip
can be see in Figs. 5a and 5b, in which the real part of the axial
velocity Fourier coefficient is presented.

Figures 6a and 6b show the near- and far-field results for the static-
cutback condition. This condition deals with a higher Mach number
and a higher frequency. The mean flow velocity inside the duct has a
Mach number equal to 0.737, and the frequency of the wave is
1430 Hz (kr1 � 31:17 and EPW� 18). The far-field numerical and
analytical results agree reasonably well for this condition.

B. Realistic Exhaust Configurations

As realistic exhaust geometries, the two geometries used in
TURNEX are studied. The first geometry is an exhaust referred to as
short cowl nozzle, and the second is an exhaust referred to as long
cowl nozzle. For the short cowl nozzle geometry, two different flow
conditions are considered: in the first one the acoustic medium is at
rest (no-flow condition), whereas in the second one there is a mean
velocity both inside the bypass duct and the core duct (static-
approach condition). Flow properties at the ducts’ inlet for each flow
condition are given in Table 2. The mean flow computations for the

Table 1 Circular duct: mean flow properties

No flow Static approach Static cutback

M1 0.000 0.000 0.000
M2 0.000 0.447 0.737
c1, m=s 340.17 340.17 340.17
c2, m=s 340.17 347.19 349.32
�1, kg=m

3 1.225 1.225 1.225
�2, kg=m

3 1.225 1.177 1.163

Fig. 2 Circular duct, no-flow condition, mode (0, 1), f � 956 Hz,M1 � 0:0,M2 � 0:0: a) near-field solution: real part of Fourier pressure coefficient,

[Pa]; and b) far-field solution: SPL directivity.

Fig. 3 Circular duct, no-flow condition, mode (9, 1), f � 956 Hz,M1 � 0:0,M2 � 0:0: a) near-field solution: real part of Fourier pressure coefficient,

[Pa]; and b) Far-field solution: SPL directivity.
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static-approach condition were performed at the Middle East
Technical University in the framework of TURNEX, solving the
Reynolds averaged Navier–Stokes (RANS) equations with a k–�
turbulence model. In Fig. 7, the axial velocity contours for the static-
approach flow condition are shown. The nodal values of the
mean flow on the acoustic mesh are evaluated, interpolating the
computational fluid dynamics (CFD) data. Each acoustic node is
localized inside the CFD mesh and then the corresponding mean
flow values are linearly interpolated from the nodal values of the
CFD-mesh element containing the acoustic node. The derivatives of
the mean flow are first evaluated on the CFD mesh and then
interpolated on the acoustic mesh using the same linear interpolating
functions.

The external computational domain for the near-field calculations
extends for z 2 ��0:495 m; 1:2 m� and for r 2 �0:0001 m; 0:65 m�
and is surrounded by vertical and horizontal PML domain with a
thickness of 0.07 m. For an incoming wave with a frequency of
7497 Hz, the PML domain have a thickness of about 1.5
wavelengths. The domain is discretized with an unstructured grid of
250,000 elements, both triangles and quadrangles. The FW-H
integration surface is a cylinder with a radius of 0.2 m, closed in the
fore region only for the no-flow condition case. The incoming wave
enters from the bypass duct and consists of a �m;�� duct mode with
unit incident intensity. For the no-flow condition, the incoming
waves have a frequency of 8282 Hz, which corresponds to a
dimensionless frequency of krfan � 21:41, where rfan � 0:14 m is

Fig. 4 Circular duct, static-approach condition, mode (9,1), f � 866 Hz, M1 � 0:0, M2 � 0:447: a) near-field solution: real part of Fourier pressure

coefficient, [Pa]; and b) far-field solution: SPL directivity.

Fig. 5 Circular duct, static-approach condition, mode (9, 1), f � 866 Hz,M1 � 0:0,M2 � 0:447, real part of Fourier axial velocity coefficient, [m=s], in
the near field: a) solution in the whole domain, and b) close-up of the region near the duct lip.

Fig. 6 Circular duct, static-cutback condition, mode (21, 1), f � 1430 Hz,M1 � 0:0,M2 � 0:737: a) near-field solution: real part of Fourier pressure

coefficient, [Pa]; and b) far-field solution: SPL directivity.
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the radius of the bypass duct at the exit plane. The larger element of
the mesh has a characteristic length of about 0.0022 m; therefore,
there are at least 19 elements per wavelength. In Fig. 8a the near-field
instantaneous pressure perturbations for the duct mode (0, 1) in the
no-flow condition is shown, whereas in Fig. 8b the corresponding
SPL directivity pattern, describing the field radiated out of the
engine, is presented. The far-field directivity is evaluated on an arc
with the center defined at the center of the bypass duct exit section
and a radius equal to r� 12 m. Figures 9a and 9b show similar
results for mode (9, 1), always with frequency 8282 Hz. The
numerical calculations corresponding to the static-approach con-
dition are shown in Figs. 10 and 11 for modes (0, 1) and (9, 1) with
f� 7497 Hz (krfan � 19:01). These calculationswere performed on
the same grid used for the no-flow condition, resulting in at least 20
elements per wavelength. All the computed cases confirm, as
expected, the existence of a direction of maximum intensity of the
radiation, ranging from 30 to 60 deg depending upon the mean flow
conditions.

The long cowl nozzle is the geometry of the test nozzle used in the
TURNEX project’s experimental measurements [23,24]. Numerical
simulations on this geometry are carried out for two flow conditions,
called static approach and static cutback. These flow conditions
present a mean velocity both inside the bypass duct and inside the

core duct. The flow properties at the ducts’ inlet for each flow
condition are given in Table 3. Mean flow computations for the long
cowl nozzle geometry were performed within the TURNEX project
by Rolls-Royce Deutschland (RRD), solving the RANS equations.
As an example, Fig. 12 reports the axial velocity contours for the
static-approach case. The nodal values of the mean flow on the
acoustic mesh are interpolated with the same method used for the
short cowl nozzle.

The near-field domain is discretized with an unstructured grid of
275,000 nodes and, in the external region, it extends for z 2
��0:44 m; 0:95 m� and for r 2 �0:0 m; 0:7 m� and is surrounded by
vertical and horizontal PML domain with a thickness of 0.08 m. In
terms of the wavelengths, assuming a frequency of 7107.5 Hz, the
PML domain have a thickness of about 1.7 wavelengths. The FW-H
integration surface is a cylinder with a radius of 0.275 m. The
incoming waves enter from the bypass duct and consist of a selection
of �m;�� duct modes, which corresponds to the target modes
generated during the experiments; the intensity of eachmode is given
by the experimental measurements. It is important to point out that
during the experiments besides the target modes some spurious
unwanted modes were also present. However the power ratio of each
target modewith respect to themost powerful unwantedmode (TVA,
target vs unwanted mode) is, in all the conditions, higher than 10 dB.
Therefore, these unwanted modes are not taken into account in the
calculations.

In the static-approach condition, the incoming waves have a
frequency of 7107.5 Hz, which corresponds to a dimensionless
frequency of krfan � 14:44, where rfan � 0:11 m is the radius of the
bypass duct at the exit plane. For this condition the resolution of the
mesh is about 21 elements perwavelength. In Figs. 13a, 14a, and 15a,
the near-field instantaneous pressure perturbations for ductmodes (4,
1), (4, 2), and (4, 3) in the static-approach condition are shown. The
corresponding SPL directivity patterns are shown in Figs. 13b, 14b,
and 15b. The far-field directivity is evaluated on an arc with a radius
of r� 12 m and the center placed at the center of the bypass duct exit
section. Consistent with the experimental measurements, the
calculated directivity is then rescaled to 1 m polar distance from the
bypass nozzle exit using the following relation:

SPL 1 m � SPL� 20 log�r=r0� (33)

where r0 � 1 m.
The three modes are then summed together and the result is

comparedwith the experimental data (see Fig. 16). The superposition
is done by evaluating the acoustic quantities for each mode on the
FW-H surface, summing up the Fourier coefficients of the modes,
and then solving the FW-H equation for the resulting signal. To get a
correct superposition of the modes, not only the intensity of each
incoming wave must match the experimental data, but also the phase
of the correspondingmodesmust be the same. The final composition
is very sensitive with respect to phase errors: a small error in the
single mode phase specification may lead to large differences in the
final composition. Matching the numerical and experimental data
implies that the loudspeaker plane, where the modes are generated in

Fig. 7 Short cowl nozzle, mean flow axial velocity [m=s] for static-

approach condition (courtesy of the Middle East Technical University).

Table 2 Short cowl nozzle: mean flow properties

at the ducts’ inlet

No flow Static approach

M1 0.000 0.000
Mfan 0.000 0.447
Mturb 0.000 0.223
c1, m=s 340.17 340.17
cfan, m=s 340.17 347.19
cturb, m=s 340.17 527.62
�1, kg=m

3 1.225 1.225
�fan, kg=m

3 1.225 1.177
�turb, kg=m

3 1.225 0.509

Fig. 8 Short cowl nozzle, no-flow condition, mode (0, 1), f � 8282 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa]; and b) far-

field solution: SPL directivity.
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the experimental measurements, and the plane where the incoming
waves enter in the computational domain must coincide. It has been
noted that computational and experimental positions differ by an
offset�z in the z direction, leading to a phase shift of the numerical
solution with respect to the experimental results. To correct this
mismatch, the numerical solution shown in Fig. 16 is multiplied by a
factor eI�zkz , where kz is the axial wave number of the incoming
wave. Experimental data presented in Fig. 16 aremeasured using two
different microphone arrays: the first is an azimuthal ring arraywith a
9.63 m diameter that could be traversed along the jet axis, whereas
the second is a polar arc microphone array arranged in the horizontal
plane at rig height with a nominal distance of 12 m to the nozzle exit,
covering a range of polar angles in steps of 5 deg from 40 to 120 deg
relative to the jet axis. All experimental data were rescaled to 1 m
polar distance using Eq. (33). The mismatch between the numerical
data and the experimental measurements for the static-approach
condition is not yet well understood. As stated earlier, the numerical
computation does not include the unwanted modes that were
generated during the experiments and this can be one of the causes for

Fig. 9 Short cowl nozzle, no-flow condition, mode (9, 1), f � 8282 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa]; and b) far-

field solution: SPL directivity.

Fig. 10 Short cowl nozzle, static-approach condition,mode (0, 1), f � 7497 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa]; and
b) far-field solution: SPL directivity.

Fig. 11 Short cowl nozzle, static-approach condition,mode (9, 1), f � 7497 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa]; and
b) far-field solution: SPL directivity.

Table 3 Long cowl nozzle: mean flow properties

at the ducts’ inlet

Static approach Static cutback

M1 0.000 0.000

Mfan 0.35 0.43

Mturb 0.29 0.44

c1, m=s 340.17 340.17

cfan, m=s 353.15 359.74

cturb, m=s 508.75 533.21

�t1, kg=m
3 1.225 1.225

�tfan, kg=m
3 1.327 1.434

�tturb, kg=m
3 0.598 0.594
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the discrepancies. Moreover, it was observed that the superposition
of themodeswas very sensitive to the offset�z. Small changes in the
value of�z lead to very different results, leading also to a complete
absence of the dip at 70 deg. This suggests that themismatch between
the data is likely due to discrepancies between the phase imposed in
the computations and the real phase of the modes.

Figures 17 and 18 show the results for the static-cutback condition.
Figure 17 shows the comparison between the numerical results for

modes (5, 1), (5, 2), (5, 3), and (5, 4), at a frequency of 9843.75 Hz
(krfan � 20:0 and EPW� 15), and the experimental data; the
directivity of each single mode is shown in Fig. 17a. For this case, the
experimental measurements report an additional, not negligible,
incoming wave mode (�25, 1), but the calculations showed that this
mode becomes cut off at the reduction of the duct section, which
occurs before the bypass duct exit plane. Therefore, mode (�25, 1)
does not contribute to the far-field SPL directivity. The last case, with
modes (9, 1) and (9, 2), at a frequency of 5742.5 Hz (krfan � 11:67
and EPW� 26), is reported in Fig. 18. For all these results the phase
error due to the offset of the loudspeaker plane has been corrected as
described earlier. Figure 18 also shows the comparison of the
numerical results of the model presented in the paper and the
numerical results obtained by the code FLESTURN, developed in
the framework of TURNEX at the Middle East Technical University
by Özyörük [2]. It solves the LEE in the frequency domain using a
fourth-order finite difference scheme.

Taking into account the difficulties of reproducing the exact
experimental conditions, the agreement between the numerical
results and the experimental data can be considered fairly good. In
addition, some of the differences could also be due to the fact that the

Fig. 12 Long cowl nozzle, mean flow axial velocity [m=s] for static-
approach condition (courtesy of Rolls-Royce Deutschland).

Fig. 13 Long cowl nozzle, static-approach condition, mode (4, 1), f � 7107:5 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa];

and b) far-field solution: SPL directivity.

Fig. 14 Long cowl nozzle, static-approach condition, mode (4, 2), f � 7107:5 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa];

and b) far-field solution: SPL directivity.

Fig. 15 Long cowl nozzle, static-approach condition, mode (4, 3), f � 7107:5 Hz: a) near-field solution: real part of Fourier pressure coefficient, [Pa];

and b) far-field solution: SPL directivity.
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present model does not take into account the nonlinear interaction
between propagating waves and the turbulent viscous shear layers
separating the different streams. For the static-cutback case, the
agreement between the two numerical codes is good, except in the
lowdirectivity angle zone,where the present code underestimates the
SPL. It is possible to state that the proposed numerical model is
capable of capturing the main features associated with the sound
radiation, such as the direction of maximum intensity in the SPL
directivity as well as the overall levels.

IV. Computational Time and Memory Requirements

All the calculations presented in this work were performed on a
Linux cluster with three nodes. Each node consists of a two-way
dual-core Opteron with 4 GB of RAM; therefore, the cluster has a
total of 12 cores and 12GBof RAM.To calculate the nearfieldwith a
grid of about 275,000 nodes (that is, 1.1 million unknowns) and a
dimensionless frequency equal to kr� 31:17, the calculations
require about 7.5min using almost all theRAMof the cluster. Indeed,
the limiting factor for these calculations is the RAM requirements:
although theMUMPS solver is very efficient, solving a linear system
with a direct method requires a large amount of memory. Therefore,
with 12 GB RAM, it was possible to solve meshes of up to 275,000
nodes. The code for the far-field calculations is not parallel; despite
this, the directivity pattern for each of the presented cases could be
obtain in about 3 min.

V. Conclusions

The numerical model based on the solution of the LEE in the
frequency domain with a continuous Galerkin FEM, coupled with
the FW-H formulation for the evaluation of the far-field directivities,
has proved to be a valuable tool for the analysis of the exhaust noise
radiation problem. The multifrontal algorithm for the matrix direct
inversion MUMPS enables a parallel distribution of the memory
requirements. With the LEE it is possible to study acoustic wave
propagation in the presence of rotational mean flows. The frequency-
domain approach suppress the Kelvin–Helmholtz instability waves,
which pollute LEE solutions in time-domain calculations.Moreover,
each single calculation, limited to a single frequency, is well suited to
the exhaust noise radiation problem in which the incoming wave can
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Fig. 16 Long cowl nozzle, static-approach condition, modes (4, 1–3),

f � 7107:5 Hz. Comparison of superposition of numerical modes and

experimental results. Far-field solution, SPL directivity.
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Fig. 17 Long cowl nozzle, static-cutback condition, modes (5, 1–4), f � 9843:75 Hz, far-field solution, SPL directivity: a) single modes, and

b) comparison of superposition of numerical modes and experimental results.
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Fig. 18 Long cowl nozzle, static-cutback condition, modes (9, 1–2), f � 5742:5 Hz, far-field solution, SPL directivity: a) single modes, and

b) comparison of superposition of numerical modes and experimental results.
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be treated as a superposition of the elementary duct modes. The
model is well suited for design and optimization processes.

The model has been successfully validated with the analytical
solution of the Munt problem. In the case of realistic engine
configurations, the numerical results reproduce the main expected
features. A comparison with the experimental results and numerical
computations of a finite difference solution of the LEE is positive.
The uncertainties are mainly due to the difficulty in prescribing
incoming waves corresponding to the experimental data.
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